Explicit inverse of tridiagonal matrix with applications in autoregressive modeling
نویسنده
چکیده
We present the explicit inverse of a class of symmetric tridiagonal matrices which is almost Toeplitz, except that the first and last diagonal elements are different from the rest. This class of tridiagonal matrices are of special interest in complex statistical models which uses the first order autoregression to induce dependence in the covariance structure, for instance, in econometrics or spatial modeling. They also arise in interpolation problems using the cubic spline. We show that the inverse can be expressed as a linear combination of Chebyshev polynomials of the second kind and present results on the properties of the inverse, such as bounds on the row sums, the trace of the inverse and its square, and their limits as the order of the matrix increases.
منابع مشابه
On the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملExplicit formula for the inverse of a tridiagonal matrix by backward continued fractions
In this paper, we consider a general tridiagonal matrix and give the explicit formula for the elements of its inverse. For this purpose, considering usual continued fraction, we define backward continued fraction for a real number and give some basic results on backward continued fraction. We give the relationships between the usual and backward continued fractions. Then we reobtain the LU fact...
متن کاملInversion of k-tridiagonal matrices with Toeplitz structure
In this paper, we consider an inverse problem with the k-tridiagonal Toeplitz matrices. A theoretical result is obtained that under certain assumptions the explicit inverse of a ktridiagonal Toeplitz matrix can be derived immediately. Two numerical examples are given to demonstrate the validity of our results. (c) ٢٠١٢ Elsevier Ltd. All rights reserved.
متن کاملMatrix representation of a sixth order Sturm-Liouville problem and related inverse problem with finite spectrum
In this paper, we find matrix representation of a class of sixth order Sturm-Liouville problem (SLP) with separated, self-adjoint boundary conditions and we show that such SLP have finite spectrum. Also for a given matrix eigenvalue problem $HX=lambda VX$, where $H$ is a block tridiagonal matrix and $V$ is a block diagonal matrix, we find a sixth order boundary value problem of Atkin...
متن کاملInverse Tridiagonal
In this paper, we consider matrices whose inverses are tridiagonal Z{matrices. Based on a characterization of symmetric tridiagonal matrices by Gantmacher and Krein, we show that a matrix is the inverse of a tridiagonal Z{matrix if and only if, up to a positive scaling of the rows, it is the Hadamard product of a so called weak type D matrix and a ipped weak type D matrix whose parameters satis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018